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Abstract. We present a variational estimate for the binding energy of a Frenkel exciton in the 
insulating cuprate superconductors. Starting from the three-band Hubbard model we perform a 
canonical transformation to O(t2). where I is the bare nearest-neighbourcopper-oxygen hopping 
integral. An effective Hamiltonian is then derived to describe the hopping of the exciton through 
the copper oxide plane. The critical parameter in the model is the nearest-neighbour coppper- 
oxygen Coulomb repulsion. V. It is found that a ciiucal value of V is needed to observe b o n d  
Frenkel excitons, and that these excitons have the same symmetry as the parent copper orbital, 
di2-yi. We derermine the critical value of V using a variational approach, and attempt to fit 
the parameten of the model to known experimental cesuIIS. 

1. Introduction 

Various optical and Raman experiments 11-31 have indicated that charge transfer excitons of 
the interatomic kind (dxz-y2 + px. py) may be the lowest-lying excitations of the insulating 
cuprate superconductors [4]. There are also theoretical predictions that charge transfer 
fluctuations play a crucial rBle in determining the superconducting and anomalous normal 
state properties of the doped compounds [5-101 although experimental evidence for these 
excitations in the doped phase is less clear. Recent numerical work on the three-band 
Hubbard model with the nearest-neighbour copper-oxygen repulsion, V, has shown that 
charge transfer excitations are indeed the lowest-lying excitations for a critical value of V 
[ I l l .  

0 ox. 
cu. 

Figum 1. An exciton in a N&l background. moving in the copper oxide plane of a cuprate 
superconductor. 

We envisage the charge transfer exciton as a localized Frenkel exciton consisting of a 
copper hole excited onto its neighbouring oxygen sites, leaving behind a vacant copper site. 
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The resultant bound particle-hole pair then delocalizes through the lattice, as illustrated in 
figure 1. The potential energy of the exciton is the nearest-neighbour Coulomb repulsion, V ,  
as the oxygen hole has only one neighbouring copper hole. This compares to the potential 
energy 2V for an oxygen hole located amongst occupied copper sites. Thus the condition 
for the exciton to lie in the charge transfer gap is that the potential energy gained in forming 
an exciton must compensate the kinetic energy loss of binding the particle-hole pair. 

In this paper we present a variational estimate for the binding energy of a charge 
transfer exciton in the insulating state of the cuprate superconductors. Starting from the 
three-band model, which treats the copper and oxygen orbitals on an equal footing, we 
perform a canonical transformation to O(t2), where t is the copper-oxygen hybridization 
integral. We thus derive an effective low-energy Hamiltonian which describes the charge 
dynamics of the copper oxide planes. However, since we do not consider terms of O(t') we 
neglect superexchange effects. The possible consequences of superexchange are discussed 
in the conclusions. By keeping terms in the Hamiltonian which describe the motion of 
the exciton we derive its energy in both a Niel and a ferromagnetic background. This 
is therefore a variational estimate of the exciton energy. To calculate the exciton binding 
energy (i.e. the energy from the bottom of the conduction band) we compare the exciton 
energy to the minimum energy of the 'single'-particle-hole excitation energy. That is, the 
energy difference from the top of the valence band to the bottom of the conduction band. 

The plan of this paper is as follows. In the next section we perform the canonical 
transformation on the three-band model. In section 3 we use this to derive the excitonic 
Hamiltonian and calculate the energy of the exciton in the insulating phase. Section 4 
discusses the 'single'-particle Hamiltonians and calculates the free particle-hole gap. In 
section 5 we calculate the condition for obtaining excitons in the charge transfer gap. 
Finally, in section 6 we attempt to fit our model to the experimental results, and conclude. 
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2. The canonid transformation 

Our starting point for the expansion is the unperturbed Hamiltonian 

H = H o + H ,  

where 

The perturbative part H, is defined as 

where i and j are copper and oxygen sites respectively, ( i j )  represents nearest neighbours 
and the operator di ,  (pj,,) creates a copper (oxygen) hole with spin U .  A is the charge 
transfer energy, Ud (Up) is the copper (oxygen) Coulomb repulsion, and V is the copper 
oxide Coulomb repulsion. rij incorporates the phase of the atomic orbitals, and is defined 
as t.. 'J - - ( -1)" ' j t .  where ml = m2 = 1, m3 = m4 = 2 and j labels the oxygen orbitals 
neighbouring the ith copper orbital, as shown in figure 2. t is the bare nearest-neighbour 
copper-oxygen hybridization. It is convenient to absorb this phase factor explicitly into the 

t i  
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iQ 
Figure Z The d+> bonding orbital of copper wiih its four neighbouring p r .  pv bonding 
oxygen orbitals. t IS the bare hopping inlegral between them. 

oxygen orbitals, and hence we set PI + -PI and p2 + -p2. The copper-copper distance 
sets the length scale. 

2 = eSHe-S, where St = -S [12]. By expanding in es it is trivial to show that 
The effective low-energy Hamiltonian is Formed using the unitary transfoxmation 

(4) 

To eliminate terms of order f we define S such that H, + [S, HO] = 0. The new 
Hamiltonian is then found by truncating the series at terms greater than O@).  Thus 
fi = H o + H l ~ ,  where H,z = f[S, HI].  2 acts on the Hilbert space of It?) where It?) = esln) 
and In) is the basis of our original Hamiltonian. 

fi = Ho + f.4 + [S, Hal+ [S, HI1 + drs. [S, Holl +O(P) .  

By inspection we note that 

and j and j '  neighbour i ,  and i' neighbours j. 
It is relatively straightforward to show that 

S = f ~ ( f i j m ) - ' ( p ~ " d i 0  - HC). 
( i j h  



3618 

Using the fact that [ f & ,  df,pj,,] = [fi,b, pf,dj,] = 0, H1z can be written as 
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The terms in equation (8) which change the number of oxygen or copper holes are eliminated 
to yield 

Although ow Hamiltonian has been simplified it is still very complicated, containing residual 
many-body effects resulting from copper-oxygen Coulomb repulsion and the effects of on- 
site copper and oxygen Coulomb repulsion. 

3. The excitonic Hamiltonian 

In constructing the excitonic Hamiltonian we first consider the part of equation (9) which 
hops the oxygen hole around a single copper-oxygen plaquette. This may be written in the 
form 

H = c h i  
i 

where 

Thus when the hole hops to a neighbouring oxygen site via an empty copper site i t  costs 
an energy t Z / ( A  + V ) .  The symmetry of this Hamiltonian is exploited by noting that the 

where the indices on the oxygen operators stand for the four neighbours of the copper site at 
i. From this it  can be inferred that our exciton has the same symmetry as the parent copper 
site, dri-yi, which is the A!, symmetry in Raman notation. h, can be rearranged into the 
more compact form, hi = [?*/(A + V)]P/oPir .  The full Hamiltonian is then derived by 
only keeping terms in equation (9) which hop this entity through the 'sea' of Cu2+ copper 
sites. We then arrive at the final Hamiltonian 

only non-zero solution of hi is the constant-phase solution P,, = % ( p , ,  t t t t  + p b  + psg  + p , ) ,  

where the zero-point energy is given as the spin degenerate ground state of one hole per 
copper site, defined by E(&.) = -Nc.A/2 - 4tZNc./(A + V ) .  

The operator Ej0 = PLdi, creates a spin 0 exciton on site i ,  while e!,, = Pjmdi: spin 
flips and creates a spin 1 exciton on site i. The first two terms in H, hop these excitons 
through the lattice. The remaining terms in Hc are self-energy terms, which include spin 
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Rips. i and k are nearest neighbour copper sites. The coefficients are 

t2(A - 3V) 
4A(A + V) 

t2[V(3V - 5A) + Up(A - 3V)l 
4A(A + V)(A + Up - V )  

ff"? = ff"0 = 

f 2 ( ( l p  f u d  - 2 v )  
S = - - E =  

4(A 4- v - ud)(A + up - V ) '  

The fact that 6 = - E  is due to the effects of exchange. 
With this Hamiltonian we now wish to construct a variational estimate for the energy 

of the exciton. This is done by considering the dispersion of the exciton through either 
a ferromagnetic or a Nee1 background. In the ferromagnetic case we set a,,, = a!,,$ and 

= 8 = E = 0. The variational wave function is then 

with an energy 

?(A - 3V) ?(9A - 6V) 
[cos k, + cos k y ]  + . (15) 2A(A + V )  A(A + V) 

= (V + A) + 
Similarly, the variational energy of an exciton in the N&l background is found by setting 
aaot = and p = E = 0. Thus, 

with 

(17) 
"(up + ud - 2 v )  + + 

(A + V - Ud)(A + Up - V) 
tz(9A - 6V) 

A(A + V) ' 

In the limit of Up = CO, E:@) = Ez(k), and for U p  c CO, EF(min) c E:(min) in our 
allowed parameter range of 0 < V c (A + Up). It is therefore OUT intention to consider the 
scenario of an exciton moving in the Ne61 background, which is also the experimentally 
relevant case. The minimum energy of the exciton can be expressed in terms of the potential 
energy and an effective kinetic energy. For the case of Ud = CO this is written as 

(18) 
N t2 

E,,, = (V + A) - ~f:~(v.  Up, A) 

where 

using k = (0,O) in equation (17). 
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4. Single-partide-hole Hamiltonian 

As we wish to determine the condition for a bound exciton in the charge transfer gap, 
we need to consider the motion of an unbound particlehole pair in order to find the 
single-particle gap energy. In determining the energy of the gap for a free-particle- 
hole pair excitation we intend to study separately the energies of an added hole and 
a removed hole from the insulating phase. The gap energy is then given as Egvp = 
E(& + I )  + E(N* - 1) - 2E(Nc.) where Nc. is the number of copper sites. We 
start by considering the energy of a removed hole, and then consider the more complicated 
scenario of an added hole. 
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4.1. Removed hole 

The Hamiltonian which describes the motion of a removed hole amongst NcU - 1 occupied 
copper sites is [I31 

where & creates a particle (destroys a hole i.e. = din) on site i. ti, only acts on single 
occupied sites and the zero-point energy is as before, E(Nc.). The Nagaoka theorem [I41 
informs us that in the strong-coupling limit the maximum bandwidth for the dispersion of 
the empty site is obtained in a ferromagnetic background. The S = ( N c .  - 1) branch of 
the specmm is then 

The minimum energy of the empty site, at k = (a, x). is the top of the valence band. 

4.2. Added hole 

The Hamiltonian for the added hole follows the analysis of Barford [15]. In that paper the 
same canonical transformation, equation (4). was performed on the Hamiltonian and the 
effective Hamiltonian was then diagonalized for the ith plaquette of one hole on the oxygen 
sites. This was done for the case Up = 0. For a general U,  the Hamiltonian is given as 

The zero-point energy is again that of a half-filled plane, E(&"). tl = 4tz/A, 12 = 
8tZ/(A + 2V - Ud) and t3 = 2 t2Up/A(A + Up). i represents all the plaquettes with an 
added hole. The operators are defined as 

(23) 
x k =0, &-, K 
2 
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Ti+ = P/?d), (26) 

- = P)&djl. (27) 
Si0 is the 'Bang-Rice' singlet operator. The factor &'/(A + 2 V  - Ud) arises kom virtual 
Cu' hopping, while the remaining terms are accounted for by virtual Cu3+ hopping. The 
additional complication to the U, = 0 case is the existence of non-zero antisymmetric 
eigenvalues for the singlet Cu2+O- pair. The oxygen hole can bond in a singlet configuration 
with its neighbouring copper hole and pick up a phase change as it hops around the plaquette. 
The motion of the added hole is complicated because a triplet state on the ith site is, in 
general, not orthogonal to a singlet or triplet state on the neighbours of i. It is also unclear 
how the antisymmetric singlet states hybridize with neighbouring sites. It is clear, however, 
that their bands are relatively flat and lie between the singlet and triplet symmetric states. 
Consequently we do not intend to consider these states in our equation. 

We now wish to construct a variational estimate for the minimum energy of this 
Hamiltonian. To do this we again invoke the Nagaoka theorem [I41 which tells us that 
the maximum bandwidth for the doped hole occurs in a ferromagnetic background. Given 
this the most obvious choice of variational wave function is that of a singlet moving in a 
ferromagnetic background. This has the Bloch wave function 

This can scatter into a triplet S, = 0 state of the form 

and into a triplet S, = 1 state of the form 
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where ek = [cos(k,) + cos(k,)l. This value of the energy agrees very well with numerical 
calculations on 4 x 4 clusters [13].  

In what now follows we will assume that only Cu+ virtual excitations are present. This 
is achieved by setting Ud to infinity, i.e. r2 = 0. V,  is known to be large in the cuprates so 
this assumption has physical validity. The energy of the excitation gap is then simply the 
distance between the top of the valence band and the bottom of the conduction band, The 
top of the valence band is at k = (R, n) and the bottom of the conduction band is given 
at k = (0,O). Thus the minimum gap energy is given as E ,  = EC(O. 0) + E"(z. R) 
-2E(NcU). Although this is not a momentum conserving transition, we take this as the gap 
energy as we require an upper bound on the value of V for obtaining a bound exciton. The 
gap energy can be rewritten in the form 

C Vermeulen and W Ba$ofOrd 

t 2  
Egap = (2V + A )  - xfgap(V* Up. A) (37) 

where 

5. Exciton binding energy 

Having calculated the minimum energy of the exciton in the antiferromagnetic phase, and 
the minimum distance between the top of the valence band and the bottom of the conduction 
band we can now calculate the binding energy of the exciton. This is defined as 

The condition Ebi.d = 0 determines the critical value of V for there to be an exciton in 
the charge transfer gap. This is illustrated in figure 3 where the critical value of v is 
plotted against = t2/A) for various values of U p .  We 
emphasize that this is an upper bound on the critical value of V .  as we have underestimated 
the gap expected from an optical transition, and the energy of the exciton is variational. 
Equation (39) illustrates the competing effects of the potential energy gain ( V )  and the 
kinetic energy loss t2/A( fgap - feXJ in forming a bound exciton. Notice that the kinetic 
energy scale is i = t2/A. III figure 4 we plot the binding energy against ir for A = 9 i  
which can be interpreted as a A of 3 eV and z = 1.0 eV. 

The effective mass is defined as I/m' = (1/fi2) a 2 E / a k 2 .  Thus, the ratio of the effective 
masses of the exciton is given as 

(where v = V / i ,  & = A / l  and 

i.e. their mass ratio is essentially just the ratio of their band widths. The free-hole band 
width is given as E&r, IT) - EJO, 0). The exciton band width is Et&, n) - E,(O. 0). 
This gives a mass ratio of 
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l ~ l ' l ' l ' l ' l ~ l '  

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 
A 

Figure 3. These curves show the boundary between a bound excilon moving in the N&I 
background and a free paniclehole pdr Far several values of U,, (Up is given in terms of I ) .  
Above the line a bound exciton has the lower energy. 

fibind / 
/' - 

6.5 7.0 7.5 
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30.0 

20.0 

10.0 

0 .o 
10.4 11.4 12.4 13.4 14.4 

P 
Figure 4. The binding energy of lhe exciton and gap energy for (a) Un = 0 and (b) U,, = m, 
in unirs of i. as a function of 9. 

6. Discussions and conclusions 

The theory presented in this paper predicts the binding energy of a charge transfer exciton 
with dx+> symmetry (Al, in Raman notation) as a function of V, A, and U,. We now 
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compare these predictions to the experimental data. Recent optical absorption experiments 
[3] give a value of the gap energy as Egap - 1.7 eV, and a recent Raman scattering study 
of insulating cuprates [ I ]  gives the binding energy of the AIS exciton as Et,i.d - 0.2 eV. 
The value of the effective hopping amplitude i may be estimated from measurements of the 
superexchange interaction [16, 171, J ,  since J = 4?/& - 0.13 eV and U,j - 10 eV from 
photoemission data. This gives us an estimate for i - 0.6 eV. For fued U, we therefore 
have two equations (18) and (37) with two unknowns and so V and A can be evaluated. 
This proceeds as follows. Firstly i is eliminated from equations (18) and (37) to give the 
relation 
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- (V + A))fgap(v, up) = (&ap - (2V + A ) ) f : , ( v ,  up). (42) 

This gives an expression for V and A which can then be reinserted into the expressions for 
the energy of the gap to give the value of i. 

For the case of U, = 0 equation (42) is a quintic polynomial in V and A. This is 
solved using the bisection method to give V - 2.7 eV and A - 3.5 eV. This gives the bare 
hopping matrix element as t - 1.4 eV. Although these parameters are quite reasonable the 
disappointing feature is that the value of V is large, and greater than U,. This is probably 
unphysical, although direct oxygen-oxygen hopping would be expected to screen U,. It 
should also be remembered that this calculation predicts an upper bound on the value of V 
required for excitons. The mass of the exciton is calculated to be mexc = 0.39mhol,. 

For the case U, = 03 equation (42) is a quadratic in A which can be solved using the 
usual quadratic formula. This gives a value of V - 5.7 eV, A - 0.4 eV, and t = 0.5 eV. 
This time all the parameters are inconsistent with the values currently accepted by most to 
be those of the cuprate superconductors, i.e. V - 1 eV. A - 3 eV, f - 1.5 eV 1181. The 
exciton mass is mac = 0.36mhOl,. 

In conclusion, we have performed a canonical transformation of the three-band Hubbard 
model up to O(r2) in the bare hopping amplitude and derived a variational estimate for the 
energy of an exciton and that of a free particle-hole pair moving through the copper oxide 
plane. We find that the kinetic energies of our particles are rescaled by an effective hopping 
amplitude ? = t 2 / A ,  and that a critical value of the nearest-neighbour Coulomb repulsion is 
required to observe bound excitons. This critical value of V is also strongly dependent on 
the value of U,, the oxygen-oxygen Coulomb repulsion. The exciton consists of an oxygen 
hole in a constant-phase sum of the orbitals tied to an empty copper site. It therefore 
has dxz-yz symmetry. Such an excitation is electric dipole forbidden, but an electric-field- 
induced dipole transition is allowed if the polarized light is parallel to the electric field [2 ] .  
Unfortunately such an experiment has not yet been performed. 

In the Raman spectroscopy terminology the exciton has A!, symmetry and is Raman 
active. These excitations have been observed, and by fitting the experimental data to our 
theory we have found an upper bound for V of 2.7 eV assuming U, = 0, or 5.7 eV assuming 
U, = 03. The latter result is undoubtedly unrealistic. 

In this paper we have not considered the effects of direct oxygen-oxygen hopping, tpp. 
Including this would have two effects. Firstly it would screen U,. Secondly it would render 
a non-bonding orbital with d3rz-rz symmetry bonding. The energy of this exciton is lowered 
while the dX2-).? symmetry state is raised. An exciton with dLz-,t symmetry is observed in 
both optical and Raman spectroscopy with a binding energy of about 1.7 eV. In addition 
to neglecting lpp we have also neglected the superexchange interaction. Thii interaction 
would be expected to narrow the valence and conduction bands and hence widen the single- 
particle energy gap. However, it is unlikely to effect our estimate of the exciton energy, 
as we assume that it propagates through a N&l background. Consequently we expect that 
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the superexchange term would reduce the value of V required for bound excitons from the 
value calculated by this theory. 
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